

The Ring Current: Cluster Results

lannis Dandouras

IRAP, Université de Toulouse / CNRS, Toulouse, France

Geospace Revisited

Rhodes, Greece

September 2014

Outline

- The Cluster spacecraft orbit
- The curlometer technique for measuring the current density
- Curlometer technique results in the Ring Current during the early years of Cluster
- Current carriers contribution to the plasma pressure
- Curlometer technique results in the later years of orbit evolution
- Analysis of the applicability of the curlometer technique in the innermost part of the magnetosphere
- The future: Cluster Swarm Conjunctions

Cluster orbit

Ring Current : *Current Density* **Direct Measurement using the Curlometer Technique**

Maxwell-Ampère Law: Curlometer Method

$$(\nabla \times B)_{x} = \frac{\Delta Bz}{\Delta y} - \frac{\Delta By}{\Delta z}$$
$$(\nabla \times B)_{y} = \frac{\Delta Bx}{\Delta z} - \frac{\Delta Bz}{\Delta x}$$
$$(\nabla \times B)_{z} = \frac{\Delta By}{\Delta x} - \frac{\Delta Bx}{\Delta y}$$

Requires closely-spaced tetrahedron (2002)

 \Rightarrow **Curlometer technique**: Local current density measurement (strength and orientation) deduced from the 4 SC magnetic field data.

QUIET EVENT: 18 March 2002 perigee pass

QUIET EVENT: 18 March 2002 perigee pass: Possible errors due to the tetrahedron configuration

1: Size

• *Small size:* the 4 Spacecraft must be situated inside the same current sheet (linear gradients).

But:

- Size sufficient to reduce the relative error made in the inter-spacecraft distances estimate.
- => The inter-SC distance must be < 500 km at perigee to correctly estimate *J*.

2: Shape

During Cluster perigee passes (and for Δ SC < 500 km):

- Tetrahedron elongation along the Z_{sm} axis.
- => Main part of the error carried by Jz_{sm} (component // to B).
- $\Delta J / J < 20\%$.
- => Good estimate of the ring current (*J* components \perp *B*).

QUIET EVENT: 18 March 2002 perigee pass

18 March 2002 perigee pass: What are the current carriers ?

STORM-TIME EVENT: 20 April 2002

L

STORM-TIME EVENT: 20 April 2002

2002 Cluster data: Ring Current density statistical study

Only ~ 20 perigee passes:

Lack of data in the 01 H to 17 H MLT sector (inappropriate inter-spacecraft separation).

• No drastic increase of the current density with decreasing Dst (no more than 30%) in the evening sector.

Vallat, Dandouras, et al., Ann. Geophys., 2005

Ring Current density statistical study: Extension to Cluster data acquired up to end 2004

- Well-organised, westward ring current
- Substantial non-storm ring current density: 9 - 27 nA m⁻²
 - Azimuthal asymmetry:
 - Enhanced (factor ~2) between 5 and 11 MLT
 - Reduced between 12 and 17 MLT
 - Region-2 FAC feeding effect?
- 4 4.5 R_E sampling effect?
- AE sampling effect?

Zhang, Dunlop, et al., Ann. Geophys., 2011

Westward Ring Current Density : SUMMARY

• The curlometer technique reproduces very well the ring current flow.

• Shows the existence of a quiet time ring current : $|J\varphi| \sim 20$ nA / m²

(the five quietest days of each month are subtracted to estimate the Dst index, making the quiet time ring current estimate impossible by this index).

implications for the respective contributions of the internal/external sources of the geomagnetic field

- Permits to study the latitudinal evolution of the J orientation :
 - Gradual evolution of the *J* orientation as a function of *llat* in the ring current region.
 - **Discontinuous evolution** of the *J* orientation at the **boundary between the ring current and the plasma sheet**.
 - Brings a crucial information concerning M-I coupling (FACs).

Composition: Moderate Storm time RC event

Cluster orbit evolution since 2007

Eastward Ring Current ?

Crucial information on the inner magnetosphere pressure balance and the coupling with the ionosphere

Early years Cluster perigee

New perigee ?

15 May 2009 event: Low-altitude perigee pass, weak activity

15 May 2009 event: Ion data

15 May 2009 event: Curlometer calulations

Analysis of the applicability of the curlometer technique: I. Tetrahedron Geometry

Elongation and Planarity need to be less than 0.8, cf. also Robert et al., 1998

Analysis of the applicability of the curlometer technique: II. B-field linearity hypothesis

curl **B**_{dip} is ~zero, as it should, when calculated <u>without the linearity approximation</u> Inter-satellite distance: ~400 - 7660 km

Blanchet et al., IRAP, 2012

Analysis of the applicability of the curlometer technique in the innermost magnetosphere: Results

- Elongation and Planarity need to be less than 0.8
- Most of the error in the innermost magnetosphere comes from the linearity hypothesis on the magnetic field.
- If curl B_{dip} << curl B, then the curlometer technique gives good results (very small error due to the non-linearity of B).
- Otherwise B_{dip} has to be subtracted from B, and errors due to the non-linearity can be strong.

Closer than 3.5 R_E the non-linearity of B is dominant.

The future: Cluster - Swarm Conjunctions

Each satellite is measuring:

- Strength and direction of the magnetic field
- Plasma conditions and characteristics
- Location

The Constellation:

- 3 identical satellites:
 - 2 side-by-side in low orbit (<460km)
 - 1 in higher orbit (< 530km)
- three orbital planes for optimal coverage in space and time
- Launch 2013: 4 years operations

ISSI Forum on Near-Earth electromagnetic environment monitoring with the Swarm-Cluster combination, 2013

Swarm

Cluster - Swarm Conjunctions: 1st Observations during Swarm Commissioning, Dec. 2013

Thank you !